Материал из энциклопедия нашего транспорта

Пособие содержит общие сведения о конструкции асинхронных электрических машин, о назначении их составных частей, рассмотрено устройство конкретной модели тягового электродвигателя. Рассматривается состав комплекта силового электрооборудования, назначение составных частей, их работа и взаимодействие.

Для правильного восприятия изложенного материала необходимо иметь представление об общих принципах управления силовым оборудованием и управления поездом с помощью САУ «Витязь» и по резервному каналу управления (в данном учебном пособии не рассматриваются). Изучению материала будут способствовать знания основ электротехники, в т.ч. и переменного тока, а так же принципов построения электрических цепей в системе трехфазного переменного тока. Для этого автор рекомендует изучить соответствующие разделы электротехники, используя учебную литературу или материал, изложенный в приложениях.

При подготовке была использована литература и техническая документация, перечень которой приведен в конце пособия.

Автор выражает благодарность всем специалистам, так или иначе принявшим участие в подготовке материала. Особую благодарность выражаю Данилову Н.Н.- заместителю начальника технического отдела ЗАО ЗРЭПС, оказавшему неоценимую помощь при подготовке третьей главы.

Настоящее учебное пособие предназначено, прежде всего, для работников, обучающихся профессии машиниста в Учебно-производственном центре метрополитена, но может быть полезно для работников электродепо, желающих повысить уровень знаний в области тягового электропривода.

Преподаватель УПЦ

московского метрополитена

Данилов Е.Б.

Асинхронный тяговый электропривод на вагонах метрополитена. Учебное пособие.

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Общие сведения о работе асинхронной трехфазной

электрической машины и ее конструкции. . . . . . . . . . . . .

Конструкция и принцип действия асинхронных

электрических машин. . . . . . . . . . . . . . . … . . . . . . . . . . . .

Образование вращающего электромагнитного

момента в асинхронной электрической машине. . . . . . .

Устройство асинхронного тягового двигателя.

Технические данные. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Основные параметры двигателя. . . . . . . . . . . . . . . . . . .

Статор. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ротор. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Подшипниковые щиты. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Вентиляция. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Датчик частоты вращения ротора. . . . . . . . . . . . . . . . . . . .

Тяговый привод. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Контейнер тягового инвертора КТИ. . . . . . . . . . . . . . . . .

Работа тягового привода. . . . . . . . . . . . . . . . . . . . . . . . . . .

Приложения

Что такое переменный ток и чем он отличается от тока постоянного. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Трехфазный переменный ток. . . . . . . . . . .

Вращающееся магнитное поле.. . . . . . . . . . . . . . . . . . . . . .

Использованная литература. . . . . . . . . . . . . . . . . . . . . . . . . .

1. Введение

Использование электрических машин переменного тока в качестве тяговых электродвигателей на железнодорожном транспорте длительное время задерживалось из-за сложностей снабжения электроподвижного состава трехфазным переменным током. Однако, развитие электротехнической промышленности, в частности совершенствования силовой полупроводниковой электроники и микропроцессорной схемотехники привело к созданию преобразователей тока и напряжения мощностью достаточной, чтобы обеспечить питанием тяговые электродвигатели. Особую роль в этом сыграла разработка транзисторов большой мощности.

В сравнении с коллекторными двигателями постоянного тока асинхронные двигатели обладают рядом преимуществ.

Впервые в отечественном массовом производстве применение асинхронных двигателей в качестве тяговых было применено на вагонах метрополитена моделей 81-740/741 и на части вагонов модели 81-720/721, а в дальнейшем на вагонах модели 81-760/761. Отечественной промышленностью налажен выпуск асинхронных электродвигателей для вагонов метрополитена. В настоящее время вагоны могут комплектоваться двигателями:

ТАД 280М 4У2 производства АЭК «Динамо»;

ДАТЭ–170 4У2 производства « ООО Электротяжмаш-Привод» г. Лысьва;

ТАДВМ-280 4У2 производства ОАО «НИПТИЭМ» г. Владимир;

ДАТМ-2У2 производства «ОАО Псковский электромашинострои-

тельный завод»;

ДТА 170 У2 АО «Рижский электромашиностроительный завод»;

ТА 280 4МУ2 производства «ОАО ELDIN» (Ярославский электро-

машиностроительный завод).

Питание электродвигатели получают от преобразователей в составе КАТП-1 или КАТП-2 производства «ОАО Метровагонмаш».

Первые комплекты асинхронного привода на вагонах метрополитена были иностранного производства «HITACHI» и «ALSTOM».

Существенно повысить силу тяги и скорость движения невозможно, не увеличив мощность тяговых двигателей электровозов. Но дальнейшее повышение их мощности осуществлять все трудней и трудней. Этому препятствуют прежде всего размеры тягового двигателя: длина его ограничена расстоянием между бандажами колесных пар, диаметр - расстоянием между осью колесной пары и валом двигателя - централью Ц (см. рис. 3) . До сих пор при наличии жестких габаритных ограничений размеров двигателей мощность их повышали, применяя более теплостойкие изоляционные материалы, усиливая охлаждение, увеличивая число пар полюсов, применяя компенсационную обмотку, выбирая оптимальное напряжение для тяговых двигателей электровозов переменного тока.

С повышением мощности двигателей все напряженнее работает коллекторно-щеточный узел. Его состоянием в значительной мере определяется продолжительность работы электровоза между осмотрами и ремонтами. Повышение мощности коллекторных тяговых двигателей не способствует увеличению их надежности и к. п. д. Поэтому вполне понятно стремление создать мощный бесколлекторный тяговый двигатель.

Электровозы с асинхронными тяговыми двигателями. На протяжении всей истории создания и совершенствования электровозов не раз пытались использовать на них самый простой и дешевый асинхронный двигатель. До недавнего времени этого не удавалось сделать, так как частоту его вращения можно экономично регулировать только изменением частоты питающего тока. Применяемые ранее с этой целью электромашинные преобразователи были тяжелыми и громоздкими. Появление тиристоров открыло путь для создания легкого и надежного преобразователя частоты.

Устройство асинхронного тягового двигателя, как отмечалось, несложно. Он имеет неподвижный статор и вращающийся ротор (рис. 126). Различают асинхронные двигатели с короткозамк-нутым ротором и с фазовым ротором. В качестве тяговых используют асинхронные двигатели с короткозамкнутым ротором. Сердечник такого ротора, как и статора, собирают из листов электротехнической стали. Обмотка ротора состоит из медных стержней, расположенных в пазах сердечника и замкнутых с торцов кольцами. Обмотка представляет собой так называемое «беличье колесо». В пазах статора уложены три обмотки, сдвинутые одна относительно другой на 120°. Эти обмотки обычно соединяют «звездой» (рис. 126, а) . При включении обмоток в трехфазную цепь по каждой из них проходит переменный ток и создается три переменных магнитных потока. Потоки, складываясь, образуют результирующий поток, вращающийся с частотой 3000 об/мин при одной паре полюсов на каждую фазу. Вращающийся магнитный поток статора двигателя, пересекая обмотку ротора, наводит в ней э. д. с. Под действием э. д. с. в обмотке ротора проходит ток, создающий собственный магнитный поток. Магнитные потоки статора и ротора взаимодействуют, в результате чего ротор начинает вращаться.

Частота вращения ротора несколько меньше частоты вращения магнитного потока статора, иначе силовые линии не пересекали бы обмотку ротора. Разность этих частот вращения называется скольжением. Увеличивая число пар полюсов, можно получить другие частоты вращения магнитного потока: 1500, 1000, 750 об/мин и т. д. Частота вращения ротора будет несколько меньше этих значений.

Обычно скольжение составляет 1 - 3% синхронной частоты. Следовательно, если изменять частоту питающего напряжения в широких пределах и тем самым синхронную частоту, вместе с ней будет изменяться и частота вращения ротора. Но, помимо частоты, необходимо регулировать и напряжение, подводимое к асинхронному двигателю, для того, чтобы получить тяговую характеристику, примерно такую, как при использовании двигателей постоянного тока с последовательным возбуждением.

Регулирование напряжения осуществляется, как и на отечественных электровозах переменного тока, переключением вторичной обмотки тягового трансформатора с помощью главного контроллера ГК (рис. 127) ступенями. Затем в выпрямительной установке В напряжение выпрямляется и подается на инвертор И. В выпрямителе осуществляется плавное регулирование напряжения, подводимого к инвертору И.

Открывая и закрывая тиристоры инвертора в определенной последовательности, получают трехфазное напряжение, которое подводится к обмотке статора асинхронного двигателя АД. Напомним, что к обычным асинхронным двигателям подводится переменное трехфазное напряжение, а следовательно, и ток, изменяющийся синусоидально. При этом каждая фаза питающего напряжения сдвинута относительно другой на 120° эл., как показано на рис. 128. Для наглядности изменение напряжения каждой фазы показано на отдельных осях. При формировании трехфазного напряжения на электровозе с асинхронными двигателями тиристоры инвертора создают напряжение ступенчатой формы в каждой фазе. Частота напряжения, подводимого к асинхронному двигателю, регулируется изменением частоты переключения этих тиристоров.

В инверторе предусмотрено специальное устройство, надежно восстанавливающее управляющие свойства тиристоров при срыве инвертирования. Реверсирование тяговых двигателей осуществляют, переключая цепи управления тиристоров инвертора, так как для изменения направления вращения асинхронного двигателя достаточно поменять местами любые две подводимые фазы питающего напряжения.

На основе разработок научно-исследовательских и учебных институтов на Новочеркасском электровозостроительном заводе построен электровоз переменного тока с асинхронными тяговыми двигателями ВЛ80а на базе электровоза ВЛ80К. Мощность каждого тягового двигателя составляет 1200 кВт, т. е. в 1,5 раза больше, чем коллекторного двигателя электровоза ВЛ80К. Один из вариантов (12-осный, мощность часового режима 11400 кВт) электровоза с асинхронными тяговыми двигателями получил обозначение ВЛ86. Он разработан в содружестве с финской фирмой «Стрёмберг».

Электровозы с вентильными синхронными двигателями. В качестве бесколлекторных тяговых двигателей на электровозе можно использовать и синхронные двигатели со статическими (вентильными) преобразователями - так называемые вентильные двигатели.

Поясним принцип работы вентильного двигателя. На его статоре расположена трехфазная обмотка, а на роторе - обмотка возбуждения постоянного тока (рис. 129). Начало и конец обмотки возбуждения соединены с двумя кольцами, электрически изолированными одно от другого. Фазные обмотки статора соединены в «звезду»; начала их подключены к преобразователю - инвертору И (или источнику постоянного тока). Инвертор И питается от выпрямителя В, подключенного к вторичной обмотке тягового трансформатора. Если, например, в какой-либо момент времени открыты тиристоры К5 и У85 инвертора, ток от выпрямителя В пройдет через тиристор У81, обмотки статора 1 и 2, тиристор Ув5, обмотку возбуждения ОВ и возвратится в выпрямитель. При указанном стрелками направлении тока в обмотках 1, 2 и обмотке возбуждения результирующий магнитный поток статора, взаимодействуя с потоком обмотки возбуждения, создаст вращающий момент, и ротор повернется по часовой стрелке. Переключая в определенном порядке выводы статорной обмотки, можно обеспечить непрерывное вращение ротора.

Таким образом, по принципу действия вентильный двигатель подобен машине постоянного тока, у которой коллектор заменен системой силовых управляемых вентилей инверторной установки. В отличие от двигателя постоянного тока вентильный двигатель имеет только три коммутируемых вывода при трехфазной обмотке вместо нескольких сотен коллекторных пластин. Кроме того, обмотка возбуждения в вентильном двигателе стала подвижной, а якорь - неподвижным. Вентильная коммутация тока в обмотках допускает значительное напряжение между выводами - до нескольких тысяч вольт. Напомним, что обычный механический коллектор удовлетворительно работает при напряжении между коллекторными пластинами не более 30-32 В (максимальное допустимое 37-42 В). Переключение выводов статорной обмотки в необходимой очередности и соответственно изменение положения ротора осуществляет система управления, имеющая специальный датчик положения ротора.

Вентильный двигатель является многофазной машиной, обмотка якоря которой питается от преобразователя, управляемого синхронно с вращением ротора, снабженного обмоткой возбуждения. Таким образом, вентильный двигатель состоит из электрической машины, вентильного преобразователя и связывающей их системы управления.

Новочеркасским электровозостроительным заводом первоначально был построен опытный образец восьмиосного грузового электровоза ВЛ80В с вентильными тяговыми двигателями. После испытания его была выпущена небольшая партия подобных электровозов для эксплуатационных испытаний. Электровозы оборудованы системой автоматического управления, действующей в режимах тяги и электрического торможения. На электровозе применено независимое возбуждение вентильных двигателей от выпрямителей-возбудителей, изменяющих ток возбуждения пропорционально току обмотки якоря двигателя. Ротор двигателя имеет шесть полюсов, ток к обмотке возбуждения подводится через два кольца и щетки.

Частота вращения двигателя регулируется изменением подводимого напряжения. Напряжение вторичной обмотки, а следовательно, и выпрямителя регулируется примерно так же, как и на электровозах переменного тока с коллекторными двигателями. Исключено только встречное включение регулируемой и нерегулируемой обмоток трансформатора и несколько повышено их напряжение. После того как к двигателям будет подведено номинальное напряжение, дальнейшее увеличение скорости осуществляется регулированием магнитного потока возбуждения.

На опытных электровозах ВЛ80 схема выпрямления и преобразования тока несколько отличается от изображенной на рис. 129. На рис. 129 показаны отдельно выпрямитель В и инвертор Я, т. е. приведена так называемая схема с явным звеном постоянного тока. На электровозе ВЛ808 выпрямитель и инвертор совмещены.

Основные технические данные двигателя.

Мощность часового режима – 170кВт, частота вращения часового режима – 1290 об/мин, номинальное напряжения питания – 530 В, номинальная частота – 43 Гц, масса – 805 кг.

3-х фазный двигатель, самовентилируемый с короткозамкнутым ротором. Тяговые двигатели, установлены на вагонах 81-740/741, с опорой только на раму тележки, что снижает ударные нагрузки на двигатель при прохождении неровностей и стыков ходовых.

Двигатели могут работать как электродвигателями так и генераторами. В первом случае электрическая энергия, потребляемая от контактной сети (3-ий рельс), преобразуется в механическую, развивая при этом вращающий момент на валу двигателя.

Во втором случае двигатель преобразует, приведенную к валу механическую энергию от вращения колесных пар в электрическую, которая может быть вновь возвращена в контактную сеть (рекуперативное торможение) или гасится на тормозном реостате (сопротивление), при реостатном электрическом торможении.

Асинхронная электрическая машина характеризуется тем, что при ее работе возбуждается вращающее магнитное поле, которое вращается асинхронно относительно скорости вращения ротора.

Устройство тягового двигателя.

Тяговый двигатель состоит из: статора, ротора, двух подшипниковых щитов, вентилятора.

Статор (неподвижная часть) – предназначен для укладки в него обмотки. Имеет форму полого цилиндра, собранного из пластин электротехнической стали, толщиной 0,5мм, изолированных друг от друга слоем лака, что обеспечивает уменьшение потерь от вихревых токов.

Фазные обмотки, которые возбуждают вращающее магнитное поле, размещаются в пазах на внутренней стороне сердечника статора. Обмотка статора подсоединяется к 3-х фазному источнику переменного тока – инвертору.

1,2 отверстия крепления подшипникового щита

3. вылет обмотки

4. отверстие центровки подшипникового щита; 5. обмотка

Ротор (вращающаяся часть) – короткозамкнутый.

Собирается также из штампованных пластин электротехнической стали, определенной конфигурации, в результате чего на внутренней стороне сердечника ротора образуются пазы. В пазы ротора вставляют обмотку, которая изготовляется в виде цилиндрической(беличьей) клетки из медных или алюминиевых стержней. Стержни вставляются без изоляции. Концы стержней замыкают накоротко кольцами, которые изготавливают из того же материала. Обмотка ротора не соединяется с сетью и с обмоткой статора. Ротор насажен на вал тягового двигателя. Вентилятор устанавливается на конце вала ротора со стороны привода. Вал т/д изготавливается из высоколегированной стали. Имеет несколько шеек различной длинны и диаметра для посадки на них подшипниковых щитов, ротора, вентилятора.

1- вентилятор; 2 и 5 – вал; 3 - беличья клетка; корпус статора.

Подшипниковые щиты


Подшипниковые щиты устанавливаются в статор с двух сторон. Подшипники щитов опираются на вал тягового двигателя.

Конструкция асинхронного тягового двигателя

В пазы статора укладывают обмотку, которая в простейшем случае состоит из трех катушек - фаз, сдвинутых в пространстве на 120 эл. градусов. Ротор асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали. На поверхности ротора имеются продольные пазы для обмотки. Листы сердечника ротора специально не изолируют, т.к. в большинстве случаев достаточно изоляции от окалины. В зависимости от типа обмотки роторы двигателей обычного исполнения делятся на короткозамкнутые и фазные.

Обмотка короткозамкнутого ротора представляет собой медные стержни, забитые в пазы. С двух сторон эти стержни замыкаются кольцами. Соединения стержней с кольцами осуществляется пайкой или сваркой. Чаще всего короткозамкнутую обмотку выполняют расплавленным, алюминием и литьем под давлением. При этом вместе со стержнями и кольцами отливаются и лопатки вентилятора.


Короткозамкнутый ротор

ПРИНЦИП ОБРАЗОВАНИЯ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ МАШИНЫ.

На статоре трехфазного двигателя расположены 3 обмотки (фазы), которые смещены в пространстве по отношению друг к другу на 120 эл. градусов. Токи, подаваемые в фазные обмотки, отодвинуты друг от друга во времени на 1/3 периода.


Токи в трехфазной обмотке

Образование вращающегося магнитного поля.

Асинхронные двигатели широко применяются в промышленности. Эти двигатели состоят из двух основных частей: неподвижной – статора и вращающейся – ротора. В асинхронном двигателе переменный трехфазный ток включается в обмотку статора, состоящую из трех самостоятельных частей. Как видно из графика изменений трехфазного тока напряжение достигает максимального значения не одновременно во всех трех фазах, а попеременно, через равные промежутки времени, то в одной, то в другой, то в третьей фазе. Следователь но, если включить такой ток в три обмотки, расположенные так, как это показано на рисунке:

Максимальное значение магнитного потока будет создаваться то в первой, то во второй, то в третьей обмотке, соответственно максимальным значениям тока в фазах, подключенных к этим обмоткам. Магнитное поле, перемещающееся таким образом по замкнутому кругу, называется вращающимся магнитным полем.

Описанное создание вращающегося магнитного поля поясняется рис. Если подключить фазу к первой катушке обмотки двигателя, фазу 2 ко второй катушке, а фазу 3 к третьей катушке обмотки, то в момент времени t 1 максимальный поток будет в первой катушке, так как в это время сила тока в фазе 1, подключенной к первой катушке, будет иметь максимальное значение. Затем сила тока в фазе 1 постепенно ослабевает и, переходя через нуль, меняет направление, в это время увеличивается значение силы тока в фазе 2 и к моменту времени t 2 сила тока в фазе 2 достигает максимального значения, поэтому максимальный поток уже создастся не первой катушкой, а второй. Это в свою очередь означает, что магнитное поле повернулось на 120°. К моменту времени t 3 максимум тока будет в фазе 3, а максимум потока будет создаваться третьей катушкой - магнитное поле повернулось еще на 120º.

К моменту времени t 4 создается такая же картина поля, как и в момент времени t 1, т. е. снова максимума ток достигает в фазе 1, а максимальный магнитный поток создается первой катушкой Это значит, что за время t 1 - t 2 магнитное поле повернулось на 360° (совершило полный оборот).

Обмотка ротора асинхронного двигателя замкнута на себя, или на сопротивление. При неподвижном роторе и наличии тока в обмотке статора силовые линии вращающегося магнитного ноля пересекают неподвижные витки обмотки ротора, в результате чего в обмотке ротора появляется ЭДС и ток. Этот ток, взаимодействуя с полем статора, создает вращающий момент, стремящийся повернуть ротор в сторону вращения поля. Ротор двигателя начнет вращаться. По мере увеличения скорости ротора уменьшаются число пересекаемых силовых линий и ЭДС и, следовательно, ток ротора асинхронного двигателя. Однако ротор никогда не достигает скорости поля, а всегда вращается. Это отставание ротора от ноля статора называют скольжением. Чем больше нагрузка на валу двигателя, тем больше скольжение. Выражается скольжение в процентах или в относительных единицах.

Обычно асинхронные двигатели имеют при полной нагрузке скольжение 2-4%.

Скорость вращения ротора асинхронного двигателя определяется по формуле:


где n-скорость вращения ротора, об/мин;

f - частота питающей сети;

p- число пар полюсов;

s - скольжение.

ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО ДВИГАТЕЛЯ .

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и наводит в них ЭДС. Так как роторная обмотка замкнута, то в проводниках ее возникают токи. Ток каждого проводника, взаимодействуя с полем статора, создает электромагнитную силу – F эм. Совокупность сил всех проводников обмотки создает электромагнитный момент М, который приводит ротор во вращение в направлении вращающего поля.

Частота вращения ротора n 2 будет всегда меньше синхронной частоты n 1 т.е. ротор всегда отстает от поля статора. Поясним это следующим образом. Пусть ротор вращается с частотой п 2 равной частоте вращающегося поля статора n 1 . В этом случае поле не будет пересекать проводники роторной обмотки. Следовательно, в них не будет наводиться ЭДС и не будет токов, а это значит, что вращающий момент М = 0. Таким образом, ротор асинхронного двигателя принципиально не может вращаться синхронно с полем статора. Разность между частотами поля статора n 2 и ротора n 1 называется частотой скольжения Δn:

Отношение частоты скольжения к частоте поля называется скольжением:




В общем случае скольжение в асинхронном двигателе может изменяться от нуля до единицы. Однако номинальное скольжение S H обычно составляет от 0,01 до 0,1 %. Преобразуя выражение *), получим выражение частоты вращения ротора:

Обмотка ротора асинхронного двигателя электрически не связана с обмоткой статора. В этом отношении двигатель подобен трансформатору, в котором обмотка статора является первичной обмоткой, а обмотка ротора - вторичной. Разница состоит в том, что ЭДС в обмотках трансформатора наводится не изменяющимся во времени магнитным потоком, а ЭДС в обмотках двигателя - потоком постоянным по величине, но вращающимся в пространстве. Эффект в том и в другом случаях будет одинаковым. В отличие от вторичной обмотки трансформатора, неподвижной, обмотка ротора двигателя вместе с ним вращается. ЭДС роторной обмотки, в свою очередь, зависит от частоты вращения ротора. В этом нетрудно убедиться, анализируя процессы, протекающие в асинхронном двигателе. Синхронная частота вращения магнитного поля статора перемещается относительно ротора с частотой скольжения Δn. Она же наводит в обмотке ротора ЭДС Е 2 , частота которой f 2 связана со скольжением S:

Учитывая, что fi=pn 1 /60, f 2 =pn 1 S/60.

Приняв величину номинального скольжения порядка 0,01-0,1, можно подсчитать частоту изменения ЭДС в роторной обмотке, которая составляет 0,5-5 Гц (при ^=50 Гц).

Общие сведения

Тяговый двигатель ДПМ-150 вагонов А

Развитие конструкции тяговых двигателей тесно связано с совершенствованием конструкции систем управления ими. Исторически подвижной состав всех видов электрического транспорта строился с коллекторными тяговыми двигателями. Это объясняется, в первую очередь, простотой простотой передачи энергии и управления режимами его работы. Такие двигатели обладают удобными для использования на транспорте механическими характеристиками. Однако, коллекторные двигатели имеют и ряд недостатков, связанных, в основном, с наличием коллектора. Коллектор, имеющий подвижные контакты (щетки), требует регулярного обслуживания. Для обеспечения надежной коммутации, снижения искрения усложняется конструкция электродвигателя. Кроме того, это ограничивает максимальную скорость вращения, что приводит к увеличению габаритов двигателя.

Развитие силовой полупроводниковой техники, обладающей высоким быстродействием, позволило в 1960-х - 80-х годах сначала отказаться от реостатной системы управления коллекторными тяговыми двигателями, заменив её более надежной и экономичной импульсной, а затем и перейти к выпуску вагонов с асинхронным тяговым приводом. На отечественных метрополитенах первым серийно выпускавшимся типом вагонов с импульсным регулированием стал тип 81-718/719 в 1991 году, а первым серийно выпускаемым типом вагонов с асинхронными двигателями - «Яуза» 81-720.1/721.1 в 1998 году.

Основными недостатками асинхронных двигателей являются сложность регулирования и сложность осуществления электрического торможения при использовании двигателей с короткозамкнутым ротором. Поэтому в настоящее время разрабатываются конструкции тяговых приводов, использующих синхронные двигатели с ротором на постоянных магнитах, вентильно-индукторные двигатели.

Коллекторные тяговые двигатели

Тяговый двигатель ДПТ-114 (аналог ДК-117)

В России существует единая унифицированная серия коллекторных тяговых двигателей постоянного тока, в которую вошли и двигатели электропоездов метрополитена . Все они имеют общий принцип компоновки и много унифицированных узлов и деталей. При изготовлении унифицированных тяговых двигателей можно использовать однотипное станочное оборудование, что снижает их стоимость. На вагонах метрополитена широко используют тяговые двигатели постоянного тока. Такие двигатели обладают хорошими тяговыми характеристиками, сравнительно просты по конструкции и надежны в эксплуатации. По конструкции тяговые двигатели электроподвижного состава существенно отличаются от стационарных двигателей постоянного тока, что объясняется особенностями их расположения и условиями работы. Размеры тягового двигателя, подвешенного под кузовом вагона, ограничены подвагонными габаритами. Диаметр его определяется диаметром колеса, так как должно быть выдержано определенное расстояние от нижней точки двигателя до уровня головки рельсов . Длина тягового двигателя ограничена габаритными размерами тележки . На вагонах установлены четыре тяговых двигателя: по одному на каждую колесную пару. Нумерация их идет по осям, считая от кабины управления . Тяговый двигатель работает в тяжелых условиях, так как на него попадают грязь с железнодорожного полотна , пыль от тормозных колодок, дождь и снег на открытых участках трассы. Поэтому все детали, расположенные в его корпусе, должны быть защищены. Для лучшего отвода тепла, выделяющегося при работе тягового двигателя, на валу якоря установлен вентилятор, засасывающий воздух со стороны коллектора и прогоняющий его через двигатель. В паспорте стационарных электрических машин обычно указывает их номинальную мощность продолжительного режима, то есть такую мощность, которую машина должна отдавать неограниченно долгое время, причем температура его узлов и деталей не должна превышать значений, допускаемых нормами для изоляционных материалов. Режим работы тяговых двигателей резко меняется в зависимости от профиля пути и веса поезда. Это не позволяет характеризовать работоспособность тягового двигателя только значением номинальной мощности продолжительного режима. Поэтому характеристики тяговых двигателей даны для часового и максимального режимов.

Асинхронные тяговые двигатели

Тяговый асинхронный двигатель ДАТЭ-170

Тяговые двигатели ДАТЭ-170 входят в комплект тягового привода КАТП-1, устанавливаемого на вагонах 81-720.1/721.1 и 81-740/741 . Их основные параметры:

  • Номинальная мощность - 170 кВт
  • Минимальное напряжение - 530 В
  • Номинальная частота тока статора - 43 Гц
  • Номинальная частота вращения - 1290 об/мин
  • Максимальная частота вращения - 3600 об/мин
  • Масса - 805 кг

Кроме того, в эксплуатации на метрополитенах Казани, Киева, Праги находятся вагоны отечественного производства с асинхронным приводом производства фирмы «Шкода».

Конструкция тяговых двигателей

Устройство тягового двигателя постоянного тока

Все тяговые двигатели постоянного тока вагонов метрополитена имеют в основном одинаковое устройство. Двигатель состоит из остова, четырех главных и четырех добавочных полюсов, якоря, подшипниковых щитов, щеточного аппарата, вентилятора.

Остов двигателя

Он выполнен из электромагнитной стали имеет цилиндрическую форму и служит магнитопроводом. Для жесткого крепления к поперечной балке рамы тележки на остов предусмотрены три прилива-кронштейна и два предохранительных ребра. В остове имеются отверстия для крепления главных и добавочных полюсов, вентиляционные и коллекторные люки. Из остова двигателя выходят шесть кабелей. Торцовые части остова закрыты подшипниковыми щитами. В остове укреплена паспортная табличка с указанием завода-изготовителя, заводского номера, массы, тока, частоты вращения, мощности и напряжения.

Главные полюсы

Тяговый двигатель ДК-117 в разрезе

Они предназначены для создания основного магнитного потока. Главный полюс состоит из сердечника и катушки. Катушки всех главных полюсов соединены последовательно и составляют обмотку возбуждения. Сердечник набран из листов электротехнической стали толщиной 1,5 мм для Уменьшения вихревых токов. Перед сборкой листы прокрашивают изоляционным лаком, сжимают прессом и скрепляют заклепками. Часть сердечника, обращенная к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока в воздушном зазоре. В тяговых двигателях ДК-108А, установленных на вагонах Е (по сравнению с ДК-104 на вагонах Д), увеличен зазор между якорем и главными полюсами, что, с одной стороны, дало возможность увеличить скорость в ходовых режимах на 26 %, а с другой стороны, уменьшилась эффективность электрического торможения (медленное возбуждение двигателей в генераторном режиме из-за недостаточного магнитного потока). Для увеличения эффективности электрического торможения в катушках главных полюсов кроме двух основных обмоток, создающих основной магнитный поток в тяговом и тормозном режимах, имеется третья - подмагничивающая, которая создает дополнительный магнитный поток при работе двигателя только в генераторном режиме. Подмагничивающая обмотка включена параллельно двум основным и получает питание от высоковольтной цепи через автоматический выключатель, предохранитель и контактор. Изоляция катушек главных полюсов кремнийорганическая. Главный полюс крепится к остову двумя болтами, которые ввертывают в квадратный стержень, расположенный в теле сердечника.

Добавочные полюсы

Они предназначены для создания дополнительного магнитного потока, который улучшает коммутацию и уменьшает реакцию якоря в зоне между главными полюсами. По размерам они меньше главных полюсов и расположены между ними. Добавочный полюс состоит из сердечника и катушки. Сердечник выполнен монолитным, так как вихревые токи в его наконечнике не возникают из-за небольшой индукции под добавочным полюсом. Крепится сердечник к остову двумя болтами. Между остовом и сердечником для меньшего рассеяния магнитного потока установлена диамагнитная латунная прокладка. Катушки добавочных полюсов соединены последовательно одна с другой и с обмоткой якоря.

Якорь

Тяговый двигатель ДК-108 в разрезе

Машина постоянного тока имеет якорь, состоящий из сердечника, обмотки, коллектора и вала. Сердечник якоря представляет собой цилиндр, набранный из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого лаком. В каждом листе имеется отверстие со шпоночной канавкой для насадки на вал, вентиляционные отверстия и пазы для укладки обмотки якоря. В верхней части пазы имеют форму ласточкиного хвоста. Листы насаживают на вал и фиксируют шпонкой. Собранные листы прессуются между двумя нажимными шайбами. Обмотка якоря состоит из секций, которые укладывают в пазы сердечника и пропитывают асфальтовым и бакелитовым лаками. Чтобы обмотка не выпадала из пазов, в пазовую часть забивают текстолитовые клинья, а переднюю и заднюю части обмотки укрепляют проволочными бандажами, которые после намотки пропаивают оловом. Назначение коллектора машины постоянного тока в различных режимах работы неодинаково. Так, в генераторном режиме коллектор служит для преобразования переменной электродвижущей силы (э.д.с), индуцируемой в обмотке якоря, в постоянную э.д.с. на щетках генератора, в двигательном - для изменения направления тока в проводниках обмотки якоря, чтобы якорь двигателя вращался в какую-либо определенную сторону. Коллектор состоит из втулки, коллекторных медных пластин, нажимного конуса. Коллекторные пластины изолированы друг от друга миканитовыми пластинами, от втулки и нажимного конуса - изоляционными манжетами. Рабочую часть коллектора, имеющую контакт со щетками, протачивают на станке и шлифуют. Чтобы при работе щетки не касались миканитовых пластин, коллектор подвергают «продорожке». При этом миканитовые пластины становятся ниже коллекторных примерно на 1 мм. Со стороны сердечника в коллекторных пластинах предусмотрены выступы с прорезью для впаивания проводников обмотки якоря. Коллекторные пластины имеют клинообразное сечение, а для удобства крепления - форму «ласточкин хвост». Коллектор насаживают на вал якоря прессовой посадкой и фиксируют шпонкой. Вал якоря имеет разные посадочные диаметры. Кроме якоря и коллектора, на вал напрессована стальная втулка вентилятора. Внутренние кольца подшипников и подшипниковые втулки насажены на вал в горячем состоянии.

Подшипниковые щиты

В щитах установлены шариковые или роликовые подшипники - надежные и не требующие большого ухода. Со стороны коллектора стоит упорный подшипник; его наружное кольцо упирается в прилив подшипникового щита. Со стороны тяговой передачи установлен свободный подшипник, который позволяет валу якоря удлиняться при нагреве. Для подшипников применяют густую консистентную смазку. Чтобы смазка при работе двигателей не выбрасывалась из смазочных камер, предусмотрено гидравлическое (лабиринтное) уплотнение. Вязкая смазка, попав в небольшой зазор между канавками-лабич рингами, проточенными в щите, и втулкой, насаженной на вал, под действием центробежной силы отбрасывается к стенкам лабиринта, где самой смазкой создаются гидравлические перегородки. Подшипниковые щиты крепят к обеим сторонам остова.

Щеточный аппарат

Для соединения коллектора двигателя с силовой цепью вагона используют электрографитные щетки марки ЭГ-2А, которые обладают хорошими коммутирующими свойствами, высокой механической прочностью и способны выдерживать большие перегрузки. Щетки представляют собой прямоугольные призмы размером 16 х 32 х 40 мм. Рабочую поверхность щеток пришлифовывают к коллектору для обеспечения надежного контакта. Щетки устанавливают в обоймы, называемые щеткодержателями, и соединяют с ними гибкими медными шунтами: в каждом щеткодержателе по две щетки, число щеткодержателей - четыре. Нажим на щетку осуществляется пружиной, упирающейся одним концом через палец в щетку, другим - в щеткодержатель. Нажатие на щетку должно быть отрегулировано в строго определенных пределах, так как чрезмерный нажим вызывает быстрый износ щетки и нагрев коллектора, а недостаточный не обеспечивает надежного контакта между щеткой и коллектором, вследствие чего возникает искрение под щеткой. Нажатие не должно превышать 25Н (2,5 кгс) и быть менее 15Н (1,5 кгс). Щеткодержатель укрепляют на кронштейне и с помощью двух шпилек, запрессованных в кронштейн, крепят непосредственно к подшипниковому щиту. Кронштейн от щеткодержателя и подшипникового шита изолируют фарфоровыми изоляторами. Для осмотра коллектора и щеткодержателей в остове двигателя имеются люки с крышками, обеспечивающими достаточную защиту от проникновения воды и грязи.

Вентилятор

В процессе работы необходимо охлаждать двигатель, так как с повышением температуры его обмоток снижается мощность двигателя. Вентилятор состоит из стальной втулки и силуминовой крыльчатки, скрепленных восемью заклепками. Лопатки крыльчатки расположены радиально для выброса воздуха в одном направлении. Вентилятор вращается вместе с якорем двигателя, создавая в нем разрежение. Потоки воздуха засасываются внутрь двигателя через отверстия со стороны коллектора. Часть воздушного потока омывает якорь, главные и добавочные полюса, другая проходит внутри коллектора и якоря по вентиляционным каналам. Воздух выталкивается наружу со стороны вентилятора через люк остова.

Устройство асинхронного двигателя с короткозамкнутым ротором

Промышленный асинхронный двигатель в разрезе

Асинхронный двигатель состоит из двух основных узлов: статора и ротора. На статоре размещают трехфазную обмотку, создающую вращающееся магнитное поле. Скорость вращения магнитного поля определяется частотой питающего двигатель тока и числом пар полюсов.

Обмотку ротора выполняют в виде так называемой «беличьей клетки». Она является короткозамкнутой и не имеет выводов. Беличья клетка состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора, набранного из листов электротехнической стали, без какой-либо изоляции. По торцам ротора устанавливают лопасти, образующие центробежный вентилятор. Ток в роторе наводится движущимся относительно него полем статора. Таким образом, для работы двигателя необходима разность скоростей вращения ротора и поля статора, что и отражено в его названии.

Характеристики тяговых двигателей

В таблице приведены технические характеристики коллекторных тяговых двигателей вагонов метрополитена:

Тип двигателя ДПМ-151 ДК-102А…Г SL-104n USL-421 ДК-104А ДК-104Г, Д ДК-108А ДК-108А1 ДК-108Г ДК-108Д ДК-112А ДК-115Г ДК-116А ДК-117А ДК-117ДМ ДК-120АМ
Тип вагонов В2 В3 В1

Асинхронные короткозамкнутые электродвигатели очень просты по конструкции; они обладают высокой надежностью в эксплуатации, низкой стоимостью изготовления и ремонта меньшими габаритными размерами и массой по сравнению с электродвигателями постоянного тока, не требуют особого ухода, кроме наблюдения за подшипниками, изоляцией, контактными соединениями, и имеют удовлетворительные тяговые свойства. При повышении частоты вращения ротора выше синхронной (частоты вращения магнитного поля) автоматически переходят в генераторный режим без каких-либо переключений, что упрощает электрическую схему при использовании электрического торможения.

Наряду с достоинствами асинхронные электродвигатели имеют ряд недостатков, затрудняющих их использование на подвижном составе. Пусковая характеристика двигателя с короткозамкнутым ротором при постоянной частоте тока не обеспечивает высоких ускорений, так как момент при трогании относительно мал и увеличивается до максимального значения с ростом скорости. Управление частотой вращения электродвигателя затруднено. Воздушный зазор между статором и ротором очень мал. Увеличение зазора повышает массу и увеличивает размеры двигателя. Пуск электродвигателя с короткозамкнутым ротором связан с большими потерями мощности и нагреванием обмоток.

Успехи силовой полупроводниковой техники и средств автоматики позволяют создать надежные и экономичные статические преобразователи частоты с приемлемыми для тепловозов размерами и массой. Этим обусловливается практическое применение в тепловозной тяге передачи переменного тока с асинхронными коротко-замкнутыми электродвигателями, тем более что для тепловозов с

Рис. 3.23. Тяговый асинхронный электродвигатель ЭД-900 (продольный и поперечныйразрезы):

1 -- вал; 2- шайба; 3- роликовые подшипники; 4 - подшипниковые щиты; 5- втулка; 6 -сердечник ротора; 7-обмотка статора; Я--сердечник статора; 9-корпус (остов); 10 кожух защитный; 1/- короткозамкнутая обмотка ротора; 12-- паз сердечника ротора; 13- паз сердечника статора; 14- прилив; 15 вентиляционный канал; 16- коробка зажимов; 17- вентиляционные отверстия в сердечнике ротора дизелями мощностью более 2940 кВт в секции при использовании тяговых электродвигателей постоянного тока придется существенно усложнять их конструкцию (применять сборные или сварные остовы, компенсационные обмотки и т. п. или увеличивать число осей). Харьковский завод «Электротяжмаш» им. Ленина, Ворошиловград-ский тепловозостроительный завод им. Октябрьской революции и Таллиннский электромеханический завод им. Калинина создали макетный тепловоз ТЭ120 мощностью 2940 кВт с передачей переменного тока, на котором используются асинхронные короткозамкнутые тяговые электродвигатели ЭД-900 (рис. 3.2.3) с опорно-рамной подвеской (см. табл. 3.4).

В тяговых машинах переменного тока магнитопровод, выполняемый из листов электротехнической стали, не может служить одновременно остовом машины (недостаточная устойчивость его формы), поэтому он закреплен в корпусе статора. Толщина стенок корпуса (остова) определяется из условий прочности и сопряжения с другими частями машины: подшипниковыми щитами, деталями воздуховода и др.

Основные части двигателя: статор, ротор и торцовые щиты с подшипниками. Статор включает корпус 9, сердечник 8, обмотку 7 и нажимные шайбы. Литой круглый корпус имеет внутренние осевые ребра жесткости, образующие каналы для прохода охлаждающего статор воздуха. Для входа и выхода воздуха остов имеет два люка. Выходной люк снабжен защитным кожухом, предохраняющим от попадания внутрь двигателя воды (при мойке тележек).

Пакет статора набирают из листов электротехнической стали на специальные призмы и закрепляют нажимными шайбами. Обмотку статора (двухслойную петлевую) укладывают в пазы сердечника статора и закрепляют в них изоляционными клиньями. Лобовые части катушки обмотки статора закрепляют конусными кольцами. Обмотанный статор обтачивают по призмам и запрессовывают в корпус. Изоляция от корпуса обмотки статора выполнена из полиамидной пленки. Ротор включает вал 1, втулку (остов) 5, сердечник 6" и обмотку 1/.

На вал напрессована втулка в виде трубы, а на нее-- сердечник ротора, набранный из листов электротехнической стали. Коротко замкнутая обмотка выполнена в виде «беличьей клетки» путем заливки пазов и торцов сердечника алюминиевым сплавом. Воздушный зазор между статором и ротором I,Г> мм Конструкция подшипниковых узлов подобна подшипниковым узлам тяговых электродвигателей постоянного тока.

ВОЗБУДИТЕЛИ, ВСПОМОГАТЕЛЬНЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ