Проверка сопротивления изоляции электрических линий мегаомметром. Порядок проведения измерений при испытании изоляции мегаомметром

Как проверить изоляцию с помощью мегаомметра.

Неотъемлемой частью и показателем электрической сети является такое понятие, как изоляция. Защитная оболочка провода или кабеля, электрический изолятор воздушной линии, изолятор выводов трансформатора и прочие устройства препятствуют электрическому току контактировать там, где нам не нужно. Изолирующая оболочка обеспечивает защиту от короткого замыкания, возгорания, пробоя на корпус электрического устройства или машины, а также защиту человека от поражения током. Тем не мене изоляция подвержена воздействию внешних факторов, таких как время, солнце, мороз, вода, механический износ, контакт с агрессивной средой. Чтобы вовремя выявить дефект существует прибор — мегаомметр. Как пользоваться этим прибором, мы расскажем далее, предоставив методику измерения сопротивления изоляции мегаомметром.

 Принцип действия прибора

 Инструкция по эксплуатаци

В настоящее время распространение получили цифровые измерители приборы, благодаря своей компактности и легкости, но наравне с ними до сих пор ходят стрелочные модели с ручной динамо-машиной. Сейчас мы рассмотрим, как правильно пользоваться мегаомметром старого образца и нового.

Обращаем ваше внимание на то, что некоторые называют прибор для измерения сопротивления изоляции мегомметром. Это не совсем правильное название, т.к. если слово разбить по частям, получится приставка «мега», единица измерения «Ом» и «метр» (с греческого переводится как мера).

Инструкция по эксплуатации

Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к. замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ. Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.

Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми. Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях. При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.

Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.

Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.

Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.

Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой).

Итак, порядок действий следующий:

1. Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты.

2. Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ.

3. Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках. Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи.

4. Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений.

5. Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.

6. Производим замер каждой линии между фазой и N, фазой и PE, N и PE. Результаты вносим в протокол измерений.

7. В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.

По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой. Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий.

Сегодня поговорим об еще одном полезном приборе, который используется для замера сопротивления изоляции, преимущественно больших значений, . Он называется мегаомметр, также, возможно, вам встретится наименование «мегомметр», это название не является официальным, скорей жаргонным, но достаточно широко используется также. По ГОСТу в официальных документах его использовать не допустимо. Чаще всего прибор используется для замера сопротивления изоляции разнообразных кабелей. При его помощи можно измерить сопротивление не только кабелей, но и трансформаторов, обмоток, разнообразных разъемов, и многого другого.

Наверное, у вас справедливо возник вопрос о том, в чем отличие прибора от более привычного омметра. Мегаомметром производятся измерения при высоких показателях напряжения, от ста до 2500 вольт, которое прибор сам и генерирует.

Если мы обратимся к строению прибора, увидим, что он состоит из двух основных частей: это источник для тока постоянной величины и схема для измерения напряжения. При этом прибор является портативным. Надо сказать, что для различных целей используются мегаомметры, производящие различные показатели напряжения. Так, если посмотреть, каким мегаомметром производится измерение сопротивления изоляции, для этого лучше подойдет мегаомметр на напряжение в 2500 вольт.

Но вернемся к устройству прибора. Для наглядности его можно посмотреть на схеме ниже.

г – это сопротивления, Г - генератор постоянного тока, И - измеритель, П - переключатель пределов измерения, 3, Л, Э - зажимы «земля», «линия», «экран»; 5 - противодействующая рамка; 6 - рабочая рамка.

А теперь давайте посмотрим, каким образом оформляются и производятся измерения мегаомметром.

Во-первых, в правилах по охране труда при экплуатации электроустановок прописано, что производить измерения этим прибором могут только специально обученные сотрудники, работающие электриками. Если напряжение превышает тысячу вольт, для проведения замера необходимо оформить специальный наряд. При меньших величинах напряжения допустимо проводить измерения в рамках текущих эксплуатационных работ.

При замере мегаомметром сопротивления токоведущие части должны быть отключены и заземлены. После подключения мегаомметра заземление можно снять.

Также правила в обязательном порядке прописывают использование диэлектрических перчаток при измерении сопротивления мегаомметром. Когда вы подключатете мегаомметр к токоведущим частям, прикасаться к ним запрещается. После проведения замеров их нужно на короткое время заземлить для снятия остаточного заряда. Все результаты измерений фиксируются в специальном журнале, его пример можно найти ниже.

Какие еще моменты стоит учесть при порядке работы с мегаомметром?

Прежде всего, стоит помнить, что данные по сопротивлению изоляции не являются неизменными. Дело в том, что на них существенное влияние оказывают температура и влажность в момент замера.

Напряжение мегаомметра следует выбирать в соответствии с номинальным напряжением обмотки. Так, например, если номинальное напряжение обмотки менее 500 в, следует выбрать прибор на 500 в. Для напряжения обмотки менее трех тысяч вольт – 1000 вольт, а для более высокого напряжение – прибор на 2500 вольт.

Для того, чтобы определить степень увлажненности изоляции, показатели записываются в динамике: на пятнадцатой секунде измерения и через минуту после начала замера. На основе отношения этих двух показателей рассчитывают так называемый коэффициент абсорбции. Если влажность изоляции высокая, коэффициент будет равен единице. Если низкая – два значения будут отличаться на 35-50%.

Перед началом замеров при помощи мегаомметра обратите внимание на исправность прибора. Так, стрелка должна показывать на отметку «бесконечность». Если это не так, прибор стоит дополнительно проверить перед началом измерений. Также внимательно осмотрите провода для соединения. Они должны быть достаточно длинными, гибкими и хорошо заизолированными. Если провода не изолированы, а используется оплетка, этот прибор считается не очень качественным, так как такие провода легко подвергаются воздействию влажности. Ну и конечно, сам мегаомметр должен быть сухим и с чистой поверхностью.
Не забывайте убедиться перед началом измерения в том, что установка обесточена (кстати, если когда вы устанавливаете мегаомметр, стрелка двинулась, это сигнал об опасности, значит, напряжение остается).
Также обратите внимание на то, что чаще всего в измерениях участвуют два человека, имеющие соответствующие допуски.

Как же производится само измерение? Для этого рукоятку привода прибора поворачивают с равномерной скоростью (она должна составлять примерно 120 оборотов в минуту, для получения более достоверных показаний лучше использовать специальный автоматический привод, а не поворачивать вручную). И в нужные моменты – на пятнадцатой секунде и после 1 минуты – смотрят показания стрелки прибора.
В некоторых случаях такие показания снимаются два раза. Но для этого необходимо полностью снова разрядить установки, чтобы избежать завышенных значений. Для этого установку нужно заземлить не меньше, чем на две минуты.

Похожие материалы.

Надежность и функциональность систем снабжения строительных объектов электричеством всегда определяется качеством сопротивления изолирующих материалов. О таких важных свойствах оборудования должен знать каждый мастер. Согласно существующим правилам эксплуатации электрических приборов, время от времени необходима их проверка. Измерение сопротивления изоляции всегда осуществляется с применением мегаомметра.

Что влияет на качество изоляции?

Период пользования электрических кабелей, а также их покрытий не является бесконечным. На качество изоляции могут воздействовать такие факторы, как природное освещение, повышенное напряжение, различие температурных режимов, трудно определяемые повреждения, а также среда, в которой используется проводка.

Для чего это нужно?

Измерение сопротивления изоляции мегаомметром требуется для наиболее точного определения возможных повреждений в электрической цепи. Выбор номинальной силы тока зависит от напряжения, подающегося на обмотку.

Измерение сопротивления изоляции нужно для тестирования степени ее функциональности. В результате обнаружения повреждений покрытия проводов могут возникать нежелательные неисправности в работе техники, а также огнеопасные ситуации. После визуального определения дефектов изоляции проводки можно не вызывать специалиста-замерщика. Если вовремя обнаружить отличие показателей мегаомметра от установленных значений, можно предотвратить разнообразные аварии, преждевременный износ техники, замыкания, возгорания, а также травмы среди обслуживающего персонала.

Необходимые условия

Измерение сопротивления изоляции кабеля проводят в помещении при допустимых температурах от +15 до +35 °С. Влажность воздуха при этом не должна превышать 80%. Это стандартные условия, которые могут изменяться в зависимости от технологии изготовления приборов. Данные электрического сопротивления в измерительных схемах должны превышать допустимое значение не менее чем в 20 раз.

Какие приборы используются?

Измерение электрического сопротивления изоляции может выполняться устройствами различной конфигурации. Они должны быть в рабочем состоянии и иметь документы, подтверждающие их качество. Органы Госстандарта регулярно контролируют точность работы указанного вида техники. Внутри мегаомметров могут размещаться аккумуляторы или интегрированные генераторы в качестве источников питания.

Различают устройства с разной степенью мощности. Приборы на 1 кВ используются при работе с проводкой, сечение которой не превышает 16 мм².

Общепринятые нормы замеров

Первое измерение сопротивления изоляции проводится на фабрике после производства проводов. Следующее тестирование осуществляется на объекте строительства перед началом работы по монтажу и перед активацией систем энергообеспечения. Последняя проверка дает возможность определить возникновение неполадок во время установки электроприборов.

Объекты взаимодействия

С применением данного вида устройств измеряться может любая техника электротехнического типа. Приборы с рабочим напряжением менее 60 В в этот перечень не входят.


Кому можно доверить измерение?

Для выполнения такой работы требуется соответствующий допуск. Только квалифицированные специалисты, входящие в состав бригад по ремонту электрооборудования, могут делать замеры. Все они должны быть подготовленными, пройти специальное обучение и получить соответствующие сертификаты, определяющие их профпригодность.

От чего зависит сопротивление?

Измерение сопротивления изоляции кабельных линий обязательно проводить до и после их ремонта. Главным образом на сопротивление изоляционных оболочек проводов может повлиять температурный показатель. Чем выше показатель сопротивления, тем меньшим должно быть сечение кабеля. Разновидность материала для изготовления проводников тоже играет роль.

Если в качестве примера рассматривать стальные провода, то показатель их сопротивления будет больше, чем в алюминиевом проводе. Влажность окружающего воздуха тоже может повлиять на проводимость изоляционных материалов. По этой причине при колебании указанной величины меняется затухание.


Метод измерения

В обследуемой сети не должно быть напряжения. Потребуется установка максимально возможного значения на участке перед стартом. Если элементы сети имеют низкое ограничение изоляции, их необходимо замыкать или отключать. Эта процедура осуществляется с применением полупроводниковых установок и конденсаторов. После этого необходимо обеспечить заземление электрических цепей. Измерение сопротивления изоляции осуществляется в течение минуты. Нужно поворачивать ручку интегрированного генератора или, если прибор питается от сети, нажимать на клавишу «высокое напряжение». Со шкалы устройства необходимо снять показания. Электрический заряд снимается с цепи методом заземления после окончания процедуры измерения.

Величина указанных параметров напрямую связана с тем, для чего используются линии электропроводки. Сопротивление провода, рассчитанного на 1 кВ, не должно быть выше 0,5 МОм. Различные приспособления для контроля и защиты должны отличаться этим значением.

Оптимальные показатели сопротивления

Размер изоляционной оболочки должен изменяться в соответствии с нормами и требованиями согласно ПУЭ. Сопротивление должно отвечать нормативам на протяжении всех сезонов с понижением и повышением необходимых значений в соответствии с изменениями температуры среды.

С каким интервалом проверяется сопротивление?

Нормативы времени, через которое следует проводить плановые замеры определенных параметров, а также необходимое напряжение измерения сопротивления изоляции более подробно расписаны в документации ПТЭЭП. Каждый год проверяется сопротивление изоляции приборов освещения, крановой и лифтовой проводки. В других случаях это происходит раз в несколько лет. Каждые полгода осуществляется проверка переносного сварочного и электрооборудования.

Шанс на возникновение разного рода нежелательных поломок может повышаться, если не будут выполняться данные требования. На нарушителей могут быть наложены соответствующие санкции в виде штрафов. Во всех организациях должны быть распланированы даты проведения подобных замеров. Опираться при этом следует на технические запросы и особенности, которым обязательно должна соответствовать техника и каждая кабельная линия. Измерение сопротивления изоляции осуществляется в процессе эксплуатационных испытаний.

Требования безопасности

Нельзя приступать к измерениям, не удостоверившись в том, что напряжение на объектах отсутствует. Перед началом замера нужно убедиться в отсутствии персонала, работающего на тех частях электрической установки, к которым присоединяется прибор для испытаний. Прикосновение к токоведущим элементам должно быть запрещено сотрудникам, находящимся в непосредственной близости от них. Это обязательно необходимо проконтролировать.

Измерение сопротивления всегда должно проводиться только на разряженных токоведущих участках с предварительным заземлением, которое снимается после того, как подключен мегаомметр. Специальные изолирующие держатели служат для защиты токоведущих элементов во время использования мегаомметра для измерения сопротивления. Не разрешается прикасаться к проводам во время подключения устройства. Методом кратковременного заземления с токоведущих частей снимается остаточный заряд после завершения работы. Замеры следует проводить неоднократно за весь период функционирования электрических сетей. Эта процедура требует ответственности. Заблаговременное измерение сопротивления изоляции электропроводки дает возможность предотвратить возникновение непредвиденных аварийных ситуаций на предприятиях.

Необходимая документация

Сопутствующий акт измерения сопротивления изоляции электропроводок составляется перед выполнением работ. Ставится дата проведения измерений. Затем указывается наименование населенного пункта, в котором была задействована бригада специалистов-замерщиков. Далее необходимо указать название объекта или организации, где проводились измерительные работы, его адрес и контактные данные. Указывается название проекта, а также номер договора. Своими подписями и фамилиями подтверждают присутствие все члены комиссии.

Указывается название прибора, номер, класс, тип и шкала. Поле для заметок заполняется при необходимости. Затем приводятся данные измерений: маркировка проводки по чертежу, сечение и количество жил, изоляционное сопротивление по отношению к земле и между проводами. Указываются размер и способ вывода комиссии, а также инициалы, должность и все подписи ее членов.

Оформление результатов

Результаты проверки всегда заносятся в протокол измерения сопротивления изоляции. Перечень определенных недостатков должен быть предъявлен заказчикам для принятия соответствующих мер по их устранению. Документация в виде электронных файлов должна быть сохранена в соответствующих базах данных. Еще один экземпляр должен быть распечатан и помещен в архивы электроизмерительных лабораторий. Копии протоколов замеров и испытаний подлежат хранению не менее трех лет.

Действия на случай неудовлетворительного результата

При обнаружении несоответствий документации выполненным работам члены рабочей комиссии акт подписывать не будут. Главе представляется соответствующее заключение. После этого комиссия составляет перечень выявленных дефектов и указывает название организации, ответственной за их своевременное устранение, которая должна исправить несоответствия на протяжении 10 дней. Рабочие обязаны заняться ликвидацией возникших неисправностей согласно инструкции. Они устраняют поломки и выполняют все согласно правилам. Изолирующий материал должен быть в хорошем состоянии, не способствовать возникновению возгорания. После этого необходимо снова представить акт рабочей комиссии для повторной проверки. При полном согласии все участники ставят свои подписи.


Заключение

Мегаомметрами очень удобно пользоваться. Все данные по замеру будут отображаться на цифровом дисплее. Эргономика современных приборов существенно отличается от образцов прошлого века. Замеры проводятся просто и легко. Мегаомметры отличаются своей универсальностью и достаточно широким диапазоном частот.

В электрических цепях важнейшую роль играет сопротивление изоляции. Особенно это важно для высоковольтных установок. Напряжение промышленного тока 230/400В (220/380В по устаревшим стандартам) можно без сомнений считать высоким с точки зрения безопасности. Поэтому проверка сопротивления изоляции электроустановок всегда выполняется:

  • при вводе электроустановки в эксплуатацию;
  • после окончания ремонтных работ;
  • периодически, для профилактики.

Для таких испытаний используется специальный прибор — мегаомметр. Из его названия следует, что он измеряет сопротивление в миллионах Ом. Поэтому работа с мегаомметром проводится с использованием высокого напряжения. Иначе нельзя получить электрического поля, близкого к реальным условиям, и слабый ток утечки невозможно измерить существующими приборами.

Необходимо знать, как пользоваться мегаомметром, этот прибор требует группу допуска 3 и выше по электробезопасности. На выходных клеммах прибора в момент измерений присутствует высокое напряжение порядка 500-2500В. При измерении сопротивления изоляции мегаомметром кабельных и других линий, или когда измеряется коэффициент абсорбции, в проводнике накапливается существенный заряд, так как емкость длинных проводников может достигать нескольких мФ.

Изолирующий материал имеет диэлектрическую проницаемость, которая увеличивает емкость. Неосторожное прикосновение к такому проводнику ПОСЛЕ проверки изоляции может быть смертельно опасным! Так как не все, даже электрики, являются любителями и знатоками физики, то буквальное знание инструкций по работе с мегаомметром является обязательным и проверяется независимо от образования и квалификации у всех работников, получающих допуск на право проводить измерения.

Правила определяют, как измерить сопротивление изоляции в каждом конкретном случае. Измерение сопротивления изоляции мегаомметром — это действие, для которого он и предназначен. Например, измерение сопротивления изоляции электродвигателя или коэффициента абсорбции. С другой стороны, измерение сопротивления обмоток постоянному току предпочтительно проводить другим прибором (омметром, а лучше мостом постоянного тока), хотя мегаомметр может работать в диапазоне низких сопротивлений, результаты будут грубыми. Можно лишь прозвонить проводник мегаомметром — в этом случае он покажет нулевое сопротивление или очень близкое к нему.


Устройство мегаомметра

Современные мегаомметры имеют устройство, существенно отличающееся от приборов ранних образцов, однако, принцип их действия остается тем же: подача в измерительную цепь повышенного напряжение и измерение малых токов, которые протекают в этой цепи. Вместо динамо-машинки и стрелочного гальванометра, помещенных в массивный карболитовый корпус, современный прибор содержит импульсный высоковольтный генератор, выпрямитель, цифровой микроамперметр, управляющий контроллер и дисплей для вывода результатов измерений.

Для питания используются щелочные или литий-ионные элементы, общим напряжением 9-12 В. Именно такие приборы сейчас получили распространение. Приборы устаревших типов из-за физического старения могут просто не пройти поверку и не получат сертификата. Без этого документа измерения считаются недействительными.

Режимы и нормы измерений

Для бытовой проводки и электроустановок испытания сопротивления изоляции проводов производятся напряжением 500 В, а для промышленных напряжением 1-2,5 кВ. Минимальное сопротивление изоляции бытовых сетей и установок должно быть не менее 0.5 МОм, а промышленных не менее 1.0 МОм, отсюда такая разница в напряжениях, которые требуются для мегаомметра.

Изоляция кабелей и проводки

Измерение сопротивления изоляции кабеля выполняют между его проводниками и между отдельнымипроводниками и землей или экраном (кожухом), если он имеется. Если кабель имеет экран или оплетку, то ее присоединяют к клемме «Э» мегаомметра для компенсации токов утечки при измерении изоляции между проводниками. Если испытуемое устройство представляет шкаф, то с клеммой «Э» соединяется корпус. Экран кабеля, оплетка, кожух или корпус электроустановки всегда заземляются. Для подключения прибора применяют только изолированный провод. Трогать его руками во время измерений запрещается. Проверяемый проводник после испытаний заземляется проводником при помощи изолирующей штанги.

Изоляция электродвигателей и трансформаторов


Поскольку и электродвигатель и трансформатор считаются электрическими машинами, то существует много общего в том, как выполняется измерение сопротивления изоляции трансформатора и мотора. Электродвигатель (трансформатор) испытывается на сопротивление межобмоточной изоляции — изоляции между фазами, а также на сопротивление изоляции между каждой из обмоток и корпусом. В случае, если обмотки соединены в звезду или треугольник внутренним образом, то испытывается только сопротивление между обмотками и корпусом. В электродвигателях дополнительно могут проводиться испытания подшипниковой изоляции.

Безопасность при измерениях

Измерения мегаомметром всегда сообщают изолированным проводникам заряды, и чем лучше качество изоляции, тем дольше держится заряд. В целях безопасности обязательно снимают эти заряды при помощи проводов с изолированными рукоятками. Закорачивают точки подсоединения проводов от прибора и каждый из проводников дополнительно замыкают на землю. Цель одна — снять все остаточные заряды для безопасности людей.

Измерение изоляции электроустановок выполнить легче, чем линий и сетей, по причине сосредоточенности и близости к персоналу. Ниже приводится пошаговый порядок действий при измерениях на линиях.

Измерение изоляции на линиях

При подготовке к измерениям кабельных линий необходимо удалить из всех мест, где возможен доступ к проводникам, посторонних людей и животных. Вывесить предупреждающие таблички и поставить дежурных.

Линия должна быть полностью обесточена и отключена от всех нагрузок: автоматов, УЗО, вставок, должны быть вынуты все вилки из розеток и т.п. иначе померить сопротивление изоляции кабеля окажется невозможным, а некоторые приборы, оказавшиеся в нагрузке, могут быть повреждены.


Выбрав цепь для измерения сначала на некоторое время закорачивают ее проводники на землю или корпус (если уже известно, что сопротивление заземления корпуса в норме). Это требуется для снятия остаточных зарядов и точности измерений.

Измерительный прибор (мегаомметр) надежно подключается к выбранным точкам, между которыми испытывается изоляция. Экраны, оплетки и корпуса подключаются к клемме «Э». Изоляционный материал проводов мегаомметра должен быть целым по всей их длине.

Нажимают кнопку «Пуск» и в линию подается напряжение. Через 15 секунд автоматически делается первый отсчет сопротивления изоляции. Еще через 45 делается второй. Прибор рассчитывает коэффициент абсорбции. Это отношение второго отсчета к первому. Коэффициент абсорбции показывает меру влажности изоляции.

Коэффициент поляризации измеряют в течении 600 секунд. Это третий отсчет. Отношение третьего отсчета ко второму является коэффициентом поляризации. Это мера качества изоляции.

Проведенный измерительный процесс запоминается в мегаомметре и все данные можно вывести на дисплей или сохранить в памяти (это зависит от марки прибора).

Мегаомметр отключают, при помощи изолированных штанг и специального проводника разряжают линейные проводники по цепи измерения и на землю. Действия повторяют для всех необходимых цепей.

Оценка результатов

Для небольших объектов за сопротивление изоляции считают данные, полученные через 15 секунд. Экраном не пользуются, так как емкость невелика (например, электродвигатель, который не подключен к длинному кабелю.) Коэффициент абсорбции также не измеряют. Во всех остальных случаях, и для кабельных линиях сопротивлением изоляции считают данные, полученные после 60 секунд. Индекс поляризации измеряют при комплексных испытаниях электроустановок.

Читателям этой статьи, скорее всего, придется измерять небольшие объекты, где измерение изоляции производится по упрощенному варианту. Мегаомметры дают возможность выбирать требуемые режимы измерений в своем меню, поскольку все измерительные процедуры более-менее стандартизованы. Несмотря на это, нельзя ни на секунду забывать о соблюдении мер безопасности, которые перечислены в статье!

Электрические сети характеризуются различными параметрами. Одним из важнейших параметров сетей является электрическая изоляция. Изоляция представляет собой какой-либо материал, препятствующий электрическому току протекать в ненужном направлении. Изоляцией может быть защитная оболочка проводов и кабелей. Такие приспособления, как изоляторы, не позволяют контактировать токопроводящим линиям с землёй. Все эти меры по изоляции токопроводящих частей направлены на то, чтобы не допустить короткого замыкания, возгорания или поражения человека электрическим током.

Мегаомметр

Изоляция, как и всякий другой материал, подвержена влиянию различных внешних факторов: погода, механический износ и другие. Для своевременного обнаружения дефекта изоляции существует прибор, так называемый мегаомметр. Он производить измерение сопротивления изоляции.

Принцип работы прибора

Для чего предназначен прибор, можно понять из его названия, которое образовано из трёх слов: «мега»- размерность числа 10 6 «ом» - единица сопротивления и «метр» - измерять. Для измерения электрического сопротивления в диапазоне мегаомов используется прибор мегаомметр. Принцип работы прибора основан на применении закона Ома, из которого следует, что сопротивление (R) равно напряжению (U), делённому на ток (I), протекающий через это сопротивление. Следовательно, для того чтобы реализовать этот закон в приборе, нужны:

  1. генератор постоянного тока;
  2. измерительная головка:
  3. клеммы для подключения измеряемого сопротивления;
  4. набор резисторов для работы измерительной головки в пределах рабочей области;
  5. переключатель, коммутирующий эти резисторы;

Реализация мегаомметра по такой схеме требует минимум элементов. Она проста и надёжна. Такие приборы исправно работают уже полвека. Напряжение в таких аппаратах выдаёт генератор постоянного тока, величина которого различна в разных моделях. Обычно оно равно 100, 250, 500, 700, 1000, 2500 вольт. В различных моделях приборов может применяться одно или несколько напряжений из этого ряда. Генераторы отличаются по мощности и соответственно по габаритам. В действие такие генераторы приводятся ручным способом. Для работы нужно покрутить ручку динамо-машины, которая вырабатывает постоянный ток.

В настоящее время на смену электромеханическим приборам приходят цифровые. В таких приборах в качестве источников постоянного тока используются либо гальванические элементы, либо аккумуляторы. А также есть новые модели со встроенным сетевым блоком питания.

Работа с мегаомметром

Работы на каком-либо оборудовании с этим прибором относятся к работам с повышенной опасностью вследствие того, что прибор вырабатывает высокое напряжение и есть вероятность получения электротравмы. Работы с этим прибором разрешается производить персоналу, изучившему инструкцию по работе с прибором, по правилам охраны труда и техники безопасности при работе в электроустановках. Работник должен иметь соответствующую группу допуска и периодически проходить проверки на знание правил работ в электроустановках, знать инструкции по охране труда, в том числе с использование мегаомметра.

Обычно этим прибором проводится измерение сопротивления изоляции кабельных линий, электропроводки и электродвигателей. Приборы должны проходить периодическую проверку в метрологической службе и иметь соответствующие документы. Запрещается проводить измерения не проверенным прибором, он должен быть изъят из эксплуатации и отправлен на проверку.

Перед началом работ с использование мегаомметра нужно убедиться в целостности прибора визуальным осмотром. На нём должен быть штамп поверки, не должно быть сколов на корпусе прибора, стекло индикатора должно быть целым. Проверяются измерительные щупы на предмет повреждения изоляции. Нужно провести тестирование прибора. Для этого необходимо, если используется стрелочный прибор, установить его на горизонтальную поверхность, чтобы избежать погрешности в измерениях и провести измерения с разведёнными и замкнутыми щупами.

На старых моделях мегаомметров измерения проводят посредством вращения рукоятки генератора с постоянной частотой 120–140 оборотов в минуту. На других моделях измерения производят нажатием соответствующей кнопки на приборе. Мегаомметр должен показывать бесконечность и ноль мегаом соответственно. После этого можно приступать к работам по измерению сопротивления изоляции.

Измерения прибором

Оформление этого вида работ на разных предприятиях отличается. В каких-то организациях эти работы выполняются по наряду-допуску, в каких-то по распоряжению или в порядке текущей эксплуатации. Важно, что общие правила выполнения одинаковы. Возьмём для примера технологию измерения сопротивления изоляции кабелей связи на железнодорожном транспорте. Выполнив все необходимые организационно-технические мероприятия (оформление работы, вывешивание плакатов и так далее), приступаем непосредственно к измерениям.

Выбрав пару, на которой нужно произвести измерения, первоначально нужно проверить на ней отсутствие напряжения. С помощью приготовленных ранее заземлителей снимаем заряд с измеряемых жил кабеля и заземляем их. Установив измерительные щупы и сняв заземлители, проводим измерение сопротивления изоляции мегаомметром. Зафиксировав полученные результаты, переключаем измерительный щуп на другую жилу и повторяем процедуру измерения.

Нужно помнить, что после проведения измерений в кабеле остаётся электрический заряд. После окончания измерений с помощью заземлителя необходимо снять электрический заряд. Нужно разрядить и сам мегаомметр. Это делается кратковременным замыканием измерительных шнуров между собой. Работы по установке измерительных щупов и заземлителей проводятся в диэлектрических перчатках.

Измеренная величина сопротивления изоляции заносится в протокол. В протоколе обычно указывается, каким прибором проводилось измерение, величина подаваемого напряжения и измеренное сопротивление изоляции. Величина сопротивления различна для разных видов испытаний. Она сравнивается с допустимой величиной и делается вывод о состоянии изоляции электроустановки.

Для производства работ по измерению сопротивления изоляции нужно руководствоваться следующими данными:

  1. электроприборы и аппараты напряжением до 50 вольт испытываются напряжением мегаомметра 100 вольт, величина измеренного сопротивления должна быть не менее 0,5 МОм. При проведении измерений полупроводниковые приборы, находящиеся в составе аппарата, должны быть зашунтированы для предотвращения выхода их из строя;
  2. электроприборы и аппараты напряжением от 50 до 100 вольт испытываются напряжением мегаомметра 250 вольт. Результаты аналогичны п.1;
  3. электроприборы и аппараты напряжением от 100 до 380 вольт испытываются напряжением мегаомметра 500–1000 вольт. Результаты аналогичны п.1;
  4. электроприборы и аппараты напряжением от 380 до 1000 вольт испытываются напряжением мегаомметра 1000–2500 вольт. Результаты аналогичны п.1;
  5. щиты распределительные , распределительные устройства (РУ), токопроводы испытываются напряжением мегаомметра 1000–2500 вольт, величина измеренного сопротивления должна быть не менее 1 МОм, при этом измерять нужно каждую секцию РУ;
  6. осветительная электропроводка испытывается напряжением мегаомметра 1000 вольт, величина измеренного сопротивления должна быть не менее 0,5 МОм.

Периодичность проведения измерений устанавливается на предприятиях. Владельцы электроустановок принимают решения о дальнейших действиях на электроустановке в зависимости от результатов измерений.

Работа по измерению сопротивления изоляции - одна из важнейших работ в электроустановках, которая помогает следить за состоянием электрооборудования и кабельного хозяйства и вовремя принимать меры для безаварийной эксплуатации электрохозяйства.